PTCDA on Au(111), Ag(111) and Cu(111): Correlation of interface charge transfer to bonding distance
نویسندگان
چکیده
The electronic structure at the interfaces of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) and the metal surfaces Au(111), Ag(111) and Cu(111) was investigated using ultraviolet photoelectron spectroscopy (UPS). By combining these results with recent X-ray standing wave data from PTCDA on the same substrates clear correlation between the electronic properties and the interface geometry is found. The charge transfer between the molecule and the metal increases with decreasing average bonding distance along the sequence Au–Ag–Cu. Clear signatures of charge-transfer-induced occupied molecular states were found for PTCDA on Ag(111) and Cu(111). As reported previously by Zou et al. [Y. Zou et al., Surf. Sci. 600 (2006) 1240] a new hybrid state was found at the Fermi-level (EF) for PTCDA/Ag(111), rendering the monolayer metallic. In contrast, the hybrid state for PTCDA/Cu(111) was observed well below EF, indicating even stronger charge transfer and thus a semiconducting chemisorbed molecular monolayer. The hybridisation of molecular and Au electronic states could not be evidenced by UPS. 2007 Elsevier B.V. All rights reserved. PACS: 73.61.Ph; 73.20. r; 68.43. h
منابع مشابه
Understanding Structure and Bonding of Multilayered Metal–Organic Nanostructures
For organic and hybrid electronic devices, the physicochemical properties of the contained interfaces play a dominant role. To disentangle the various interactions occurring at such heterointerfaces, we here model a complex, yet prototypical, three-component system consisting of a Cu-phthalocyanine (CuPc) film on a 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) monolayer adsorbed on Ag(1...
متن کاملDetermining Potentials of Zero Charge of Metal Electrodes versus the Standard Hydrogen Electrode from Density-Functional-Theory-Based Molecular Dynamics.
We develop a computationally efficient scheme to determine the potentials of zero charge (PZC) of metal-water interfaces with respect to the standard hydrogen electrode. We calculate the PZC of Pt(111), Au(111), Pd(111) and Ag(111) at a good accuracy using this scheme. Moreover, we find that the interface dipole potentials are almost entirely caused by charge transfer from water to the surfaces...
متن کاملFully Atomistic Understanding of the Electronic and Optical Properties of a Prototypical Doped Charge-Transfer Interface
The current study generates profound atomistic insights into doping-induced changes of the optical and electronic properties of the prototypical PTCDA/Ag(111) interface. For doping K atoms are used, as KxPTCDA/Ag(111) has the distinct advantage of forming well-defined stoichiometric phases. To arrive at a conclusive, unambiguous, and fully atomistic understanding of the interface properties, we...
متن کاملThe interface structure of n-alkylthiolate self-assembled monolayers on coinage metal surfaces.
The current state of understanding of the structure of the metal/thiolate interface of n-alkylthiolate 'self-assembled monolayers' (SAMs) on Cu(111), Ag(111) and Au(111) is reviewed. On Cu(111) and Ag(111) there is now clear evidence that adsorbate-induced reconstruction of the outermost metal layer occurs to a less atomically-dense structure, with the S head-group atom bonded to four-fold and ...
متن کاملElectronic and magnetic properties of zigzag graphene nanoribbons on the (111) surface of Cu, Ag, and Au.
We carry out an ab initio study of the structural, electronic, and magnetic properties of zigzag graphene nanoribbons on Cu(111), Ag(111), and Au(111). Both, H-free and H-terminated nanoribbons are considered revealing that the nanoribbons invariably possess edge states when deposited on these surfaces. In spite of this, they do not exhibit a significant magnetization at the edge, with the exce...
متن کامل